Modeling long-term human activeness using recurrent neural networks for biometric data
نویسندگان
چکیده
منابع مشابه
Modeling long-term human activeness using recurrent neural networks for biometric data
BACKGROUND With the invention of fitness trackers, it has been possible to continuously monitor a user's biometric data such as heart rates, number of footsteps taken, and amount of calories burned. This paper names the time series of these three types of biometric data, the user's "activeness", and investigates the feasibility in modeling and predicting the long-term activeness of the user. ...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملmachine learning for predictive management: short and long term prediction of phytoplankton biomass using genetic algorithm based recurrent neural networks
in the regulated nakdong river, algal proliferations are annually observed in some seasons, with cyanobacteria (microcystis aeruginosa) appearing in summer and diatom blooms (stephanodiscus hantzschii) in winter. this study aims to develop two ecological models forecasting future chlorophyll a at two time-steps (one-week and one-year forecasts), using recurrent neural networks tuned by genetic...
متن کاملHierarchical Recurrent Neural Networks for Long-Term Dependencies
We have already shown that extracting long-term dependencies from sequential data is difficult, both for determimstic dynamical systems such as recurrent networks, and probabilistic models such as hidden Markov models (HMMs) or input/output hidden Markov models (IOHMMs). In practice, to avoid this problem, researchers have used domain specific a-priori knowledge to give meaning to the hidden or...
متن کاملRevisiting NARX Recurrent Neural Networks for Long-Term Dependencies
Recurrent neural networks (RNNs) have shown success for many sequence-modeling tasks, but learning long-term dependencies from data remains difficult. This is often attributed to the vanishing gradient problem, which shows that gradient components relating a loss at time t to time t− τ tend to decay exponentially with τ . Long short-term memory (LSTM) and gated recurrent units (GRUs), the most ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Medical Informatics and Decision Making
سال: 2017
ISSN: 1472-6947
DOI: 10.1186/s12911-017-0453-1